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Abstract
Amongst the promised capabilities of fourth-generation x-ray sources currently under
construction is the ability to record diffraction patterns from individual biological molecules.
One version of such an experiment would involve directing a stream of molecules into the x-ray
beam and sequentially recording the scattering from each molecule of a short, but intense, pulse
of radiation. The pulses are sufficiently short that the diffraction pattern is that due to scattering
from identical molecules ‘frozen’ in random orientations. Each diffraction pattern may be
thought of as a section through the 3D reciprocal space of the molecule, of unknown, random,
orientation. At least two algorithms have been proposed for finding the relative orientations
from just the measured diffraction data. The ‘common-line’ method, also employed in 3D
electron microscopy, appears not best suited to the very low mean photon count per diffraction
pattern pixel expected in such experiments. A manifold embedding technique has been used to
reconstruct the 3D diffraction volume and hence the electron density of a small protein at the
signal level expected of the scattering of an x-ray free electron laser pulse from a 500 kD
biomolecule. In this paper, we propose an alternative algorithm which raises the possibility of
reconstructing the 3D diffraction volume of a molecule without determining the relative
orientations of the individual diffraction patterns. We discuss why such an algorithm may
provide a practical and computationally convenient method of extracting information from very
weak diffraction patterns. We suggest also how such a method may be adapted to the problem
of finding the variations of a structure with time in a time-resolved pump–probe experiment.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The expected advent, in the next few years, of fourth-
generation x-ray sources of ultrashort pulses of hard x-rays
through the x-ray free electron lasers (XFELs) currently
under construction in the US, Japan, and Europe (Normille
2006) gives rise to the very real possibility of a recording
of a diffraction pattern of a single molecule from a single
ultrashort radiation pulse. The photoionization caused by the
intense pulse is expected to cause a Coulomb explosion of
the molecule in about 50 fs (Neutze et al 2000). However,
since the pulse duration may be significantly shorter, the
possibility exists of recording a meaningful diffraction pattern

of the molecule while it is still in something like its original
state.

The need to determine the structure of an individual
biomolecule stems from the main limitation of biomolecular
x-ray crystallography as it is currently practised, namely
that not all biomolecules can be crystallized. Indeed, some
40% of biomolecules do not crystallize, and many cannot
easily be purified. Although more than 1

2 million proteins
have been sequenced, the structures of less than 10% have
been determined (Protein Data Bank, http://www.pdb.org).
Thus, the ability to determine the structure of individual
biological molecules—without the need for crystallization—
would constitute a significant breakthrough.

0953-8984/09/134014+11$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/13/134014
http://stacks.iop.org/JPhysCM/21/134014
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://www.pdb.org


J. Phys.: Condens. Matter 21 (2009) 134014 D K Saldin et al

Since a single molecule does not have translational
periodicity like a crystal, its diffraction pattern is expected
to be continuous, or diffuse, allowing the possibility of
oversampling the pattern in comparison to the usual Bragg
sampling interval in reciprocal space, �q = 2π/L, where L
is a linear dimension of the molecule. As pointed out by Miao
et al (1999) this may allow the determination of the phases
associated with the measured intensities, and hence of the
molecular electron density, by an iterative phasing algorithm
(e.g. Fienup 1978, 1982; Oszlányi and Süto 2004, 2005).

Of course, even in traditional x-ray crystallography, in
general a 3D structure cannot be determined from a single
diffraction pattern alone. Many diffraction patterns from
many tilts of the crystal relative to the x-ray beam are
needed. This is necessary since a single diffraction pattern
provides information about only a limited slice through the 3D
reciprocal space of the molecule, knowledge of all of which is
needed for a successful 3D structure determination1.

In the proposed single-molecule crystallography, obvi-
ously a single XFEL pulse can likewise produce informa-
tion only about one slice through the reciprocal space of the
molecule. It is proposed that this limitation be overcome by di-
recting a beam of identical hydrated protein molecules into the
x-ray beam by electrospraying or via Rayleigh-droplet forma-
tion (Fenn 2002, Spence et al 2005). The molecular density is
controlled to be small enough that there is unlikely to be more
than one molecule in the beam at a given time. Each diffracted
x-ray pulse would generate a diffraction pattern of a molecule
in a particular (random) orientation (see figure 1).

The collection of diffraction patterns from a complete
ensemble of randomly oriented molecules would then, in
principle, contain enough information for performing the 3D
structure determination. A problem is that, unlike for the
case of a crystal, where the orientations are controlled by a
goniometer, and thus known, the individual molecules have
random and initially unknown orientations. It has been
proposed (e.g. Huldt et al 2003) that the relative orientations
of the diffraction patterns in 3D reciprocal space may be
determined through their ‘common lines’, in analogy with
work on projected electron microscope images in cryo-electron
microscopy (Frank 2006). The first demonstration of such an
algorithm for simulated noise-free x-ray diffraction patterns
from a set of 480 random molecular orientations was by
Shneerson et al (2008). This paper also demonstrated that
the resulting oversampled (Miao et al 1999) 3D intensity
distribution may be inverted to recover the 3D molecular
electron density by means of an iterative phasing algorithm.

An investigation of the effectiveness of the algorithm for
reduced mean photon counts (MPC) per pixel and resulting
Poisson noise was also described in that paper. It was found
that the method ceased to be effective for an MPC per pixel of
less than about 10. This is a far cry from the MPC per pixel

1 However, it should be noted that a single diffraction pattern from a bundle
of fibers from beam incidence normal to the fiber axis sometimes suffices for
structure determination, since, in this case, the 3D diffraction volume may
be generated by sweeping this pattern about a line through its center parallel
to the fiber axis. The most famous example is the so-called ‘Maltese cross’
diffraction pattern (Franklin and Gosling 1953, Watson and Crick 1954) from
which the essential elements of the DNA structure were deduced.

Figure 1. Schematic diagram of the proposed single-molecule
diffraction experiment with a x-ray free electron laser (XFEL).
(Graphic reproduced from Gaffney and Chapman (2007), with kind
permission. Copyright 2007 AAAS.) Each molecule disintegrates
about 50 fs after illumination with the XFEL pulse (Neutze et al
2000). However, if the pulse is significantly shorter than this, one
may expect a single-pulse diffraction pattern to be characteristic of
the original atomic configuration of the molecule. A new molecule is
then illuminated by another pulse to give rise to another diffraction
pattern, albeit from a different (random) molecular orientation, and
then another and so on. It is assumed that the resulting set of a large
number of very weak diffraction patterns contains enough
information for the reconstruction of the 3D molecular structure.

of about 4 × 10−2 in the high-resolution part of the diffraction
pattern expected from a 500 kD molecule exposed to a single
XFEL pulse (Shneerson et al 2008). At such levels of detected
signal, it is difficult to imagine how it would be possible to even
identify common lines on each of the diffraction patterns.

The diffraction pattern pixels marking the positions of
common lines consist of a small fraction of all the data of
a diffraction pattern. Thus, it may be argued that use of
a common-line method for finding the relative orientations
of diffraction patterns is rather inefficient. A much more
effective method of identifying the relative orientations in 3D
reciprocal space of very weak diffraction patterns has been
proposed by Fung et al (2008). In this technique, each
diffraction pattern is represented by a p-dimensional vector
(where p is the number of pixels in each diffraction pattern).
The magnitudes of the components of this vector are just the
numbers of photons in each of the pixels. If the ends of such
vectors are plotted in the p-dimensional space, they would
be expected to trace out a three-dimensional manifold in the
p-dimensional space (where p � 3) subject to noise. The
reason is that, for a given molecule, there are just three latent
variables associated with each of the diffraction patterns, the
three Euler angles specifying their spatial orientations in 3D.
It was shown by Fung et al that it is possible to find their
relative orientations from the ensemble of diffracted photons
by the manifold embedding technique known as generative
topographic mapping (Bishop 1998). By combining diffraction
patterns with MPCs of about 4 × 10−2, related by rotation
about two mutually perpendicular axes (each perpendicular
also to the incident beam direction), it was shown how the
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3D reciprocal space of the sample molecule may be filled out
sufficiently densely to allow the reconstruction of the electron
density of the small protein chignolin (PDB entry 1UAO) using
an iterative phasing algorithm. In principle, the same method
may be used for diffraction patterns of completely random
orientations of the SO(3) group.

In the present paper, we propose an alternative approach
to structure determination from the same set of simulated
diffraction patterns. We examine the possibility that it may
not be necessary to determine the relative orientations of
the individual diffraction patterns in order to reconstruct the
3D reciprocal-space distribution. Instead, we focus on the
possibility of extracting, from the ensemble of measured
diffraction patterns, the one feature they all have in common,
namely that each represents a 2D section (not necessarily
planar for a curved Ewald sphere) through a single 3D
reciprocal-space distribution of scattered intensity from a
single molecule or molecular ensemble. In particular, we
will show that the coefficients of a shell-by-shell spherical
harmonic expansion of the 3D intensity distribution may be
determined from cross-correlations between the intensities
at different pixels in the ensemble of measured diffraction
patterns.

Hence, the method proposed bears some similarity to
that of fluctuation x-ray scattering, as proposed by Kam
(1978), where diffraction patterns from a short x-ray pulse are
measured for a set of randomly oriented proteins in solution. In
a usual x-ray experiment on molecules in solution, the random
orientations of the molecules result in a scattering signal which
depends only on the magnitude q of the scattering vector,
q = k − ks, where k is the wavevector of the incident x-rays,
and ks is that of the scattered x-rays. (We define |k| = 2π/λ,
where λ is the x-ray wavelength.) The resulting variation
I (q) of the scattered intensity is the usual small angle x-ray
scattering (SAXS) signal (e.g. Svergun and Stuhrmann 1991).
Kam suggested that, if the diffraction patterns arise from
scattering of short-pulse radiation, deviations from the SAXS
signal may be observable. He suggested that measurements of
the cross-correlations amongst these fluctuations may enable
the reconstruction of the structure of the dissolved protein
molecules. An experimental difficulty is that the fluctuations
sought are a small fraction of the total measured signal.

We point out in this paper that measurements of diffraction
patterns from individual molecules, as proposed for an XFEL
experiment, allow much more direct access to the intensity
correlations, without the background isotropic (SAXS) signal,
which may itself nevertheless be reconstructed if required as
a part of a much larger database of useful signals. Despite
the fact that the intensity correlations are difficult to measure
accurately on an individual diffraction pattern (due to the
low MPC per pixel), they may be measured to arbitrary
accuracy by summing the signal over the large number of
diffraction patterns expected to be measured in an XFEL
experiment. What is more, the size of the array of these
cross-correlations, which forms the input to the reconstruction
algorithm, does not increase as more diffraction patterns
from random molecular orientations are added. This keeps
the algorithm computationally tractable however large the
measured data set.

Figure 2. Construction of a 3D diffraction volume from Ewald
spheres of random orientation. Two Ewald spheres are shown, one
(S1) due to beam incidence antiparallel to the Z axis, and one (S2)
due to beam incidence antiparallel to the Z ′ axis. The orientation of
each Ewald sphere is specified by the set of three Euler angles
(φ, θ,ψ). The difference between the θ Euler angles of the two
spheres is θ12. The line of intersection of the two Ewald spheres
(the common line) is specified by C12.

2. Theory

The starting point of the theory is the expression of the
distribution of the scattered intensity I over the 3D molecular
reciprocal space (represented by the polar coordinates, q , θ ,
and φ) as the spherical harmonic expansion

I (q, θ, φ) =
∑

lm

Ilm(q)Ylm(θ, φ) (1)

where Ylm(θ, φ) is a spherical harmonic.
A diffraction pattern represents a section through the

reciprocal space of a molecule in a given orientation. For
example, if one imagines this reciprocal space labeled by a
set of three Cartesian axes, X , Y , and Z (see figure 2), and
we take the x-ray incidence direction to be opposite to that of
the Z axis, then the diffraction intensities are those that would
lie on a portion of the Ewald sphere (S1) of radius equal to
the wavenumber κ = 2π/λ (where λ is the wavelength of
the x-rays). The view of this Ewald sphere from a direction
antiparallel to the X axis is shown in figure 3, and that
antiparallel to the Z axis in figure 4.

The measured diffraction pattern samples the 3D
reciprocal space of the molecule on this Ewald sphere. In
terms of the radial distance q , and polar and azimuthal angles θ
and φ, specifying points in this reciprocal space, inspection of
the geometry of figures 2–4 makes it clear that sets of points
on each Ewald sphere, and hence the measured diffracted
intensities, may be specified by polar and azimuthal angles
in the frame of reference of each diffraction pattern, with
the following relation between the polar angle and the radial

3
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Figure 3. Section through the Ewald sphere S1 (see figure 2), viewed
antiparallel to the X axis.

distance q:
θ(q) = π/2 − sin−1(q/2κ). (2)

This relationship correctly takes account of the curvature of the
Ewald sphere for arbitrary x-ray wavenumber κ . Consequently,
one may alternatively specify any point on the measured
diffraction pattern by a combination of q and φ, as illustrated in
figure 4. In fact, the measured intensity in a diffraction pattern
arising from radiation incident antiparallel to the Z axis is

IZ (q, φ) =
∑

lm

Ilm(q)Ylm(θ(q), φ). (3)

In the frame of reference fixed relative to the reciprocal space
of the molecule, the intensity I (w)(q, φ) on a diffraction pattern
due to a different molecular orientation specified by an indexw
may be thought of as sampling a different section (S2) through
the same 3D reciprocal space, rotated relative to the above
through three Euler angles. Thus, the measured diffracted
intensity for the wth molecular orientation may be written as

I (w)(q, φ) =
∑

lmm′
D(w)

lmm′ Ilm′ (q)Ylm(θ(q), φ) (4)

where D(w)

lmm′ is a Wigner D-matrix which rotates a spherical
harmonic Ylm through the given Euler angles.

Now consider the cross-correlation J (q, φ; q ′, φ′) over all
diffraction patterns (DPs) of the measured intensities at two
pixels specified by (q, φ) and (q ′, φ′) illustrated in figure 4. If
the number of DPs is N ,

J (q, φ; q ′, φ′) = 1

N

∑

w

I (w)(q, φ)I (w)(q ′, φ′)

= 1

N

∑

w

∑

lmm′
D(w)∗

lmm′ I ∗
lm′ (q)Y ∗

lm(θ(q), φ)

×
∑

l′m′′m′′′
D(w)

l′m′′m′′′ Il′m′′′ (q ′)Yl′m′′(θ ′(q ′), φ′). (5)

The Wigner D-functions D(w), which are functions of the
three Euler angles specifying full rotations of the molecule,
are representations of the full rotation, or SO(3), Lie group.
Each group element is specified by a given set of the Euler
angles. It is assumed that, for a large number of measured
diffraction patterns, this set of angles spans the entire space

Figure 4. A diffraction pattern pixel may be labeled by the
magnitude q of the scattering vector, and an azimuthal angle φ in the
frame of reference attached to the diffraction pattern. A set of
intensity cross-correlations may be constructed by multiplying the
intensities Iq,φ and Iq′ ,φ′ on each diffraction pattern (w) and
summing over all diffraction patterns.

of group elements uniformly. Note also that the summation
over w in (5) involves only the D-functions. Performing the
sum over w, which is then effectively a sum over the space of
all the elements of the SO(3) group, and applying the great
orthogonality theorem (see e.g. Tinkham 2003), we find

1

N

∑

w

D(w)∗
lmm′ D

(w)
l′m′′m′′′ = 1

2l + 1
δll′δmm′′δm′m′′′ . (6)

Performing the sum over w first in (5), making use of
the great orthogonality relation (6), and then summing over
l ′,m ′′, and m ′′′ leads to the following simplification of the
expression (5) for the intensity cross-correlation function:

J (q, φ; q ′, φ′) =
∑

l

Fl(qq ′;φφ′)Bl(q, q ′) (7)

where

Fl(qq ′;φφ′) = 1

2l + 1

∑

m

Y ∗
lm(θ(q), φ)Ylm(θ

′(q ′), φ′)

= 1

4π
Pl [cos θ(q) cos θ ′(q ′)

+ sin θ(q) sin θ ′(q ′) cos (φ − φ′)] (8)

where Pl is a Legendre polynomial of order l, and

Bl(q, q ′) =
∑

m′
I ∗
lm′ (q)Ilm′ (q ′). (9)

The indices q and q ′ are common to the two sides of
equation (7). Therefore, for a particular pair of qq ′ indices, (7)
may be written as the matrix equation

Jφφ ′ =
∑

l

Fφφ ′,l Bl . (10)

All elements of the matrix F consist of real-valued Legendre
polynomials. Thus, the above equation is purely real, and may
be solved for the real coefficients Bl by matrix inversion:

Bl =
∑

φφ ′
{F−1}l,φφ ′ Jφφ ′ (11)

4
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φ φ
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Figure 5. Plots of the intensity correlation coefficient J (qφ; q ′φ′) versus φ for φ′ = 0◦ for the values of q = q ′ indicated. These quantities
were calculated from simulated data for diffraction patterns of a randomly oriented molecule, chignolin (PDB entry: 1UAO) of P1 symmetry.
Each of these plots is a linear combination of Legendre polynomials, exactly as predicted by theory. The structural information resides in the
magnitudes of the expansion coefficients Bl(q, q) of the Legendre polynomials.

where the cross-correlations J may be evaluated from the
measured diffraction data. Putting back the qq ′ indices, we see
that we may find each of the quantities Bl(q, q ′) (equation (9))
from the measured data.

3. Numerical tests

The equations take a particularly simple form for q = q ′,
i.e. for correlations between intensities on the same resolution
ring. Then, equation (8) may be written as

F(qq;φφ′; l) = 1

4π
Pl [cos2 θ(q)+ sin2 θ(q) cos (φ − φ′)]

(12)
and hence (7) may be written as

J (qφ; qφ′) = 1

4π

∑

l

Pl [cos2 θ(q)+ sin2 θ(q) cos (φ − φ′)]
× Bl(q, q). (13)

The quantities Bl(q, q) are real constants, and J (qφ; qφ′)
is a linear combination of Legendre polynomials that, for a
given q , is a function of (φ − φ′) only. This was verified
by evaluating J (qφ; qφ′) from 358 400 simulated diffraction
patterns of random orientations of the small protein chignolin
(PDB entry 1UAO) via the first equality of (5). The results
are shown in figure 5, where J (qφ; qφ′) is plotted against φ,
taking φ′ = 0 for various values of q .

Furthermore, Friedel’s rule

I (q) = I (−q) (14)

imposes limitations on the allowed values of l. Equation (14)
may be expanded as∑

lm

Ilm (q)Ylm(q̂) =
∑

lm

Ilm Ylm(−q̂)

=
∑

lm

Ilm(−1)lYlm(q̂). (15)

The only way the first and third expressions above can be equal
is if l is even. Thus, the sum in (13) is over just the Legendre
polynomials of even orders, 0, 2, 4, . . ..

We used (11) to calculate Bl(q, q) from data for the
same set of simulated diffraction patterns and have plotted
the resulting quantities as functions of l in figure 6 for
the particular values of q (=0.15(2π) and 0.5(2π) Å

−1
)

corresponding to the plots in figure 5. The crosses represent
values of the same quantity calculated from the spherical
harmonic expansion coefficients Ilm(q) of the 3D distribution
of scattered intensities computed directly from the assumed
structure of the model protein (as noted earlier, only even
values of l give non-zero contributions). The near perfect
agreement between the lines and crosses is an indication of
the correctness of the theory, and suggests that the quantities
Ilm(q) may be found from the intensity cross-correlations of
measured diffraction patterns.

If this can be done, the resulting intensity distribution
could be evaluated on an ‘oversampled’ (Miao et al 1999)
Cartesian grid, from which the molecular electron density may
be found using an iterative phasing algorithm.

Finding the coefficients I00(q) from the elements B0(q, q)
is trivial. For l = 0, the only allowed value of m is also 0.
Then, the summation on the RHS of (9) reduces to a single
term, that is

B0(q, q) = I00(q)I00(q), (16)

and since I00(q) is real, I00(q) may be found by simply taking
the square roots of the quantities B0(q, q) (the only ambiguity
is in the sign of the square root, and this ambiguity is removed
by the physical requirement of positive intensities).

I00(q) represents the angular average of the scattered
intensity on the (reciprocal-space) resolution shell specified
by the magnitude q of the scattering vector. This suggests
the following test. One may start with, say, a protein of

5
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Figure 6. Plots of Bl(q, q) versus l for values of q corresponding to each of the plots in figure 5. These plots give the ratio of the
contributions of the angular momenta l to each of the cross-correlations J (qφ; q0) computed from the simulated diffraction patterns. The
crosses represent values of the same quantity calculated from (9) with the spherical harmonic expansion coefficients Ilm (q) of the 3D
distribution of scattered intensities computed directly from the assumed structure of the model protein (as noted in the text, only even values
of l give non-zero contributions). The near perfect agreement between the lines and crosses is an indication of the correctness of the theory,
and suggests the possibility that the quantities Ilm (q) may be extracted from the intensity cross-correlations of measured diffraction patterns.
The two plots shown are on the same scale, with B0(0.15(2π), 0.15(2π)) taken to be unity, as shown.

known structure from the Protein Data Bank, and for a fixed
orientation, calculate directly the distribution of scattered
intensities over a set of spherical resolution shells of the 3D
molecular reciprocal space. An averaging of these intensities
over this set of resolution shells would be expected to yield the
quantities I00(q).

One may also simulate a large number of diffraction
patterns from random orientations of the same molecule.
This set of diffraction data will enable the calculation of the
set of cross-correlation coefficients J (q, φ; q ′φ′) described
above. From this set of reduced data, one may calculate the
coefficients I00(q) from equations (11) and (16) above for the
resolution shells characterized by the same set of quantities q .

A comparison of the calculations of the same quantities
from a model of the small synthetic protein chignolin (PDB
entry: 1UAO) is shown in figure 7. The near perfect agreement
is an encouraging indication of the basic correctness of the
theory.

4. Independence of angular momentum blocks in the
spherical harmonic expansion of the intensity

The quantities I00(q) represent the angularly averaged radial
distribution of scattered intensity, which is measured directly
from e.g. x-ray scattering from protein molecules in solution,
as in small angle x-ray scattering (SAXS). If this were the only
quantity found by our method, it would be nothing more than
a fancy method of obtaining SAXS data, though to perhaps a
higher resolution. However, as with Kam’s (1978) analysis of
fluctuations of x-ray scattering, a knowledge of the Bl(q, q ′)
coefficients allows the extraction of much more information
about a molecule than from SAXS data alone, due to the
potential it affords of also finding the higher-order coefficients

Figure 7. Comparison of I00(q) calculated from the
cross-correlations of simulated diffraction pattern intensities (solid
curve) and from averages of the intensity (crosses) on spherical shells

of varying radius q (in Å
−1

) of a directly calculated 3D diffraction
volume of a fixed molecule of the small synthetic protein chignolin
(PDB entry: 1UAO).

Ilm for l,m �= 0 of the spherical harmonic expansion of the
reciprocal space of the molecule. First, we point out why
an obvious method for extracting the Ilm(q) quantities from
Bl(q, q ′) runs into difficulties.

Returning to equation (9) we note that it should be
possible to calculate all elements of the quantity Bl(q, q ′)
from measured diffraction data by matrix inversion and using
equation (11). The question is how to calculate the unknown
expansion coefficients Ilm(q) on the RHS from the known
quantities on the LHS.

6
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An initial thought might be to exploit the fact that the
angular momentum quantum number l appears on both sides
of the equation, by noting that, for each value of l, (9) may be
written as

Bqq ′ =
∑

m

I †
qm Imq ′ , (17)

which is in the form of the matrix equation

B = I†I (18)

where † denotes Hermitian conjugation. This suggests that the
matrix I may be found by following the standard method of
finding the square root of the Hermitian matrix B: first note
that the latter may be written as

B = C[{λm}]DC†

= C[{√λm}]D[{√λm}]DC†

= GG† (19)

where the subscript D after the square brackets indicates that
the square brackets represent a diagonal matrix whose diagonal
elements are represented by the set of quantities within the
brackets. The subscript m specifies the particular diagonal
element.

With this notation, C is the matrix constructed from the
column eigenvectors of B, and λm is the mth eigenvalue. The
matrix

G = C[{√λm}]D (20)

is then the ‘square root’ of B. However, since

B = GG†, (21)

then also

B = GOO†G† (22)

where O is a unitary matrix which (by definition) satisfies the
equation

OO† = U (23)

where U represents an identity matrix.
Thus, the square root, G, of B as found by the above

method will be ambiguous up to a multiple of an arbitrary
(2l + 1) × (2l + 1) unitary matrix, O, and thus G cannot
necessarily be identified with I†. Kam (1978) suggests that
this unitary matrix may be identified with a Wigner rotation
matrix (or D-function), D(l)

mm′ (α, β, γ ). If, and only if, the
Wigner rotation matrices associated with the different values of
l corresponded to the same Euler angles α, β, and γ would this
not be a problem, as the 3D diffraction volume, and ultimately
the 3D molecular electron density, would merely be subject
to an overall rotation through the same Euler angles. The
problem is that each angular momentum block is calculated
separately, and there is no guarantee that the result of applying
the matrix square root operation above will result in rotations
of the different angular momentum blocks by the same Euler
angles.

5. Determination of a molecular shape function

One approach to obtaining structural information about the
molecule from the B matrices calculated as above is via the
calculation of the molecular shape function (Stuhrmann 1970a,
1970b; Svergun and Stuhrmann 1991), a target of the analysis
of small angle x-ray scattering (SAXS). A brief review of
this method is now given, followed by a description of its
adaptation to the present problem.

Central to this method is the definition of a molecular
shape function F(ω), where ω ≡ (θ, φ) represents a set of
polar angles θ and φ in the frame of reference of the molecule.
This function is defined by the relations

ρ(r) =
{

1 if 0 � r � F(ω)

0 if r > F(ω)
(24)

where
F(ω) =

∑

lm

flm Ylm(ω) (25)

where Ylm is a spherical harmonic, and l and m are azimuthal
and magnetic quantum numbers.

Thus the shape function F(ω) is determined if its spherical
harmonic coefficients flm may be found from the experimental
data.

This is possible for the following reason. The spherical
harmonic coefficients of the electron density

ρlm(r) =
∫
ρ(r)Y ∗

lm(ω) dω (26)

are related to those of the scattered amplitude by the Hankel
transform

Alm(q) = i l(2/π)1/2
∫ ∞

0
ρlm(r) jl(qr)r 2 dr (27)

where jl is the spherical Bessel function of order l.
From equations (24) to (27), it may be deduced (Shneerson

and Saldin 2009) that

Alm(q) = i l(2/π)1/2
∫

Rl [F(ω)]Y ∗
lm(ω) dω (28)

where

Rl [F(ω)] =
∫ F(ω)

0
jl(qr)r 2 dr (29)

and, from (25), we conclude that Alm(q) is a known function
of the expansion coefficients fl′m′ of the shape function
representation. Symbolically one may write this as

Alm(q) = g(q, { fl′m′ }) (30)

where g is a known function of q and of the set { fl′m′ } of
coefficients of the shape function expansion. It should be
noted that the full set of coefficients of the shape function
expansion contributes to each angular momentum component
Alm of the expansion of the amplitudes. Consequently, there
is no question of the shape function coefficients being subject
to independent rotations in SO(3). It is this feature which

7
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enables the shape function to be determined without ambiguity
from an angular momentum decomposition of the 3D intensity
distribution, even if the coefficients of that decomposition are
subject to arbitrary and independent rotations.

The spherical harmonic coefficients of the scattered
amplitudes and intensities are related by (Stuhrmann 1970b)

Ilm(q) = (−1)m
∑

l1m1l2m2

G(lm, l1m1, l2m2)Al1m11(q)A
∗
l2m2
(q)

(31)
where

G(lm, l1m1, l2m2) = (−1)m1

×
[
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

]1/2 (
l1 l2 l
0 0 0

)

×
(

l1 l2 l
m1 m̄2 m̄

)
(32)

where the quantities represented by the large parentheses are
Wigner 3 j symbols. From (9) and (31), (32) it can be
concluded that

B(th)
l (q, q ′) = h(q, q ′; { fl′m′ }), (33)

i.e., B(th)
l (q, q ′), the theoretical expression for the quantity

B(exp)
l (q, q ′), is a different known function h of the expansion

coefficients { fl′m′ } of the shape function expansion. This
suggests that the coefficients { fl′m′ } may be found from the
experimental data by optimization of the agreement with
theory by minimizing the cost function

�[{ fl′m′ }] =
∑

qq ′;l
[B(exp)

l (q, q ′)− B(th)
l (q, q ′; { fl′m′ })]2 (34)

in a multidimensional space whose coordinates are the shape
function coefficients { fl′m′ }.

This is essentially the method (Svergun and Stuhrmann
1991) used in SAXS to find the shape function, except that the
experimental data set in SAXS consists only of I00(q). In the
terms of our more general theory, the cost function in SAXS
contains only the terms for which q = q ′ and l = 0 in (34),
above. To put it another way, SAXS data set consists of only a
small subset of the much larger data set accessible in the single-
molecule diffraction experiment that we describe. Due to the
much greater information content of this much larger data set,
it must be possible to determine the molecular shape function
much more accurately with the data expected to be available
in an XFEL experiment. Performing the radial integrals of
the Hankel transforms (27) analytically (Shneerson and Saldin
2009) should also allow the inclusion of data from wider range
of q (and q ′) than usual in SAXS.

We have shown earlier how accurately I00(q) (and
hence B0(q, q)) may be found from the cross-correlations
of simulated diffraction patterns from random orientations of
a single molecule. For the purposes of the next test, we
simulated the quantities B(exp)

0 (q, q) and B(exp)
2 (q, q) from the

theoretical expressions (9) and (28)–(32) for assumed values
of the molecular shape coefficients { fl′m′ } for lysozyme (PDB
entry: 2BPU). We then attempted to recover these quantities
in the expression by minimizing the expression (34), starting

Figure 8. Comparison of variations with q (in Å
−1

) of B(exp)
0 (q, q)

and B(exp)
2 (q, q) (solid lines) based on assumed values of molecular

shape coefficients flm , and recovery of the same quantities by
varying these coefficients by simulated annealing, starting from
random values. The best fit curves for B(th)

0 (q, q) and B(th)
2 (q, q) are

displayed as dashed lines. The optimization was performed on only
the non-SAXS data, and thus on the B0(q, q) coefficients in a range
of large q (from 0.25 to 0.5 Å

−1
). Consequently the quantities

B0(q, q) shown are much smaller than B2(q, q). Hence the apparent
disagreement of the B0(q, q) quantities is relatively insignificant.

from random values of { fl′m′ } in the expressions for B(th)
l (q, q).

Of course, for q in the range 0 to about 0.25 Å
−1

the
quantity B0(q, q) is just the square of the SAXS signal I00(q).
Since we were interested in the question of whether the non-
SAXS part of the signal from the intensity cross-correlations
contains extractable information about the molecular shape, we
included only the B(exp)

0 (q, q) data for q outside this range in
the cost function (34). The optimization was performed using
a simulated annealing algorithm (Kirkpatrick et al 1983). The
resulting optimal fit of the quantities B0(q, q) and B2(q, q)
between experiment and theory is shown in figure 8.

8
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From the resulting optimal values of these expansion
coefficients, the molecular shape function was evaluated
from (25) and the resulting shape plotted in figure 9 using
the MASSHA graphics program (Konarev et al 2001), with
a stick figure of the α-C trace of lysozyme superimposed on
it. The excellent agreement is an encouraging indication of the
capability of this method of determining the molecular shape
from the non-SAXS part of the data.

A major problem with the use of SAXS for the
determination of molecular structure is the very limited amount
of information in the relatively short range of q of the single
I00(q) curve measured. An argument from Shannon suggests
that the width of an information element in a SAXS curve
from a molecule of diameter D is �q = π/D. This is about
0.025 Å

−1
for a typical protein of diameter 	120 Å, suggesting

that a SAXS curve of width ∼0.25 Å
−1

would contain no more
than about 10 ‘Shannon channels’ (Svergun et al 1996). In
turn, this severely limits the number of structural parameters
extractable from the data. Consequently, analysis of SAXS
data is used mostly to extract just a few leading terms fl′m′

of the expansion of the molecular shape function, and this may
give no more than a low-resolution shape of the molecule.

The method of analysis proposed here yields not just
the SAXS data contained in B0(q, q), but also many other
independent items of data in the independent variations of
q and q ′ and the different values of l in the more general
quantities Bl(q, q ′) extractable from the data, and should thus
contain perhaps even orders of magnitude more information
about the structure of the molecule.

6. Alignment of different angular momentum blocks
by molecular replacement

Details of the internal structure of the molecule may be found
if intensity cross-correlations are measured also for a molecule
of known structure with substantial structural overlap with the
unknown one to be determined, as in the method of molecular
replacement in classical protein crystallography (Rossmann
and Blow 1962).

Suppose that the above analysis is applied both to the
molecule of known structure, and that of the closely related
unknown structure. Different B-matrices (17) may be found
from the measured intensity correlations of the two molecules.
Assuming that the differences between the two structures are
significantly smaller than their similarities, we may define

δBl(q, q ′) = B ′
l (q, q ′)− Bl(q, q ′) (35)

where B ′ refers to the unknown structure, and B to the known
one. Taking the variation of equation (9),

δBl(q, q ′) =
∑

m

{I ∗
lm(q)δ Ilm(q

′)+ δ I ∗
lm(q)Ilm(q

′)} (36)

where δ Ilm (q) represents the difference in coefficients of the
spherical harmonic expansions of the 2D diffraction intensities
of the unknown and known structures. The corresponding
expansion coefficients Ilm(q) of the known structure are found
from e.g. structural data deposited in the Protein Data Bank

Figure 9. Molecular shape of lysozyme (PDB entry: 2BPU)
recovered by optimization of B0(q, q) and B2(q, q), as described in
the text. The graphics program MASSHA is used to overlap the
recovered molecular shape with an α-C trace of the protein.

(PDB), via the expression for the spherical harmonic expansion
coefficients of the scattered amplitude (Svergun et al 1995):

Alm(q) =
∑

j

f j (q)i
l jl(qr j)Y

∗
lm(r̂ j ) (37)

where f j (q) is the scattering factor of an atom at position
r j , and by the use of (31) to relate these coefficients to the
corresponding expansion coefficients of the intensity.

The presence of the index l on both sides of (36) suggests
once more that the equations may be solved for each angular
momentum quantum number in turn. For each value of l,
the above equation may be written with subscripts specifying
matrix elements as

δBqq ′ =
∑

m

{I ∗
qmδ Imq ′ + δ I ∗

qm Imq ′ }. (38)

The quantities on the LHS can be found from the
experiment, and the quantities I may be calculated from the
structure of the known protein. The only unknowns are
the difference expansion coefficients, δ I , of the 3D intensity
distribution. The fact that the difference intensities δ Imq ′ and
δ Iqm appear only in products with corresponding reference
quantities for a known structure in which the different angular
momentum blocks are correctly aligned ensures that even
though the quantities δ Ilm(q) are calculated separately for each
value of l, the relative orientations of these quantities across
different angular momenta are correctly preserved.

The only question is whether the number of equations,
represented by the number of distinct elements of δB , is
greater than or equal to the number of unknown elements
of δ I . Let us denote the number of values of q for which
independent intensity values may be measured by (#q) and the
number of independent values of m for the given value of l
by (#m). Given that δB is a symmetric matrix, the number of

9
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equations is the number of its independent elements, namely
(#q)2/2 + (#q)/2. But (#m) = (2l + 1) (this assumes the
elements δ Imq are complex but that, due to the reality of δ I (q),
not all elements are unique) and consequently the number of
independent elements δ Imq for a given l is (#q)(2l + 1). Thus,
it follows that the equations may be solved uniquely for all the
elements of δ I if

(#q)/2 + 1/2 � (2l + 1). (39)

For a given value of q , the quantity (#q) may be estimated
as q/(δq), where (δq) = π/D, where D is the molecular
diameter. Thus, (#q) = q D/π = 2q R/π (where R is the
radius of the molecule). Substituting into (39), we deduce that
approximately

l � q R/(2π), (40)

i.e. that the maximum angular momentum quantum number
lmax in the expansion

δ I (q) =
∑

lm

δ Ilm(q)Ylm(q̂) (41)

of the ‘difference intensity’ is

lmax = q R/2π. (42)

The electron density associated with this ‘difference intensity’
may be found by noting that

δ I (q) = A∗(q)δA(q)+ c.c. (43)

where A(q) is the scattered amplitude due to a known molecule
at the point in reciprocal space specified by q, calculable using
the formula

A(q) =
∑

j

f j (q) exp (iq · r j ) (44)

where f j (q) is a form factor of an atom j at position r j in the
known structure, and δA(q) is the corresponding quantity due
to the unknown ‘difference electron density’ δρ(rl), where rl

is a location in real space (in the same coordinate system as
was used in the specification of atom positions r j ), and c.c.
denotes complex conjugation. Substituting the discrete Fourier
transform

δA(q) =
∑

l

δρ(rl) exp (iq · rl) (45)

into (43), we deduce

δ I (q) =
∑

l

δρ(rl)[A∗(q) exp (iq · rl)+ c.c.], (46)

a set of (real) linear equations which may be solved for
the difference electron density, as in the holographic method
for x-ray crystallography of Szöke (1993), if the number of
independent values of {δ I (q)} is greater than or equal to the
number of independent values of {δρ(rl)}.

7. Time-resolved structure determination of isolated
molecules

The method of time-resolved crystallography (e.g. Schmidt
et al 2005; Key et al 2007) has provided fascinating glimpses
of the evolution of protein structures on short timescales after
excitation with a pump laser pulse. The technique may be
described as a pump–probe experiment, the probe x-ray beam
following the pump laser beam at a precisely defined time
interval in the range of 100 ps to a second.

The method of analysis of the measured Laue diffraction
patterns for different sample tilts assumes a knowledge of the
unexcited (or ‘dark’) structure. The change in the structure
upon excitation is determined by a difference Fourier method
(Cochran 1951) which operates on the difference between the
structure factors before and after the laser excitation.

For single-molecule structure determination, one could
envisage the measurement of two sets of diffracted intensity
data: one ({I }) of diffraction patterns of molecules not excited
by a pump laser in random orientations, e.g. as proposed by
Neutze et al (2000), and another ({I ′}) consisting of similar
diffraction patterns of molecules excited a short time earlier
by a pump laser. Internal correlations amongst these sets of
intensities allow the determination of the quantities Bl(q, q ′)
and B ′

l (q, q ′), respectively. Equations (35)–(38) would then
allow the determination of quantities δ Ilm (q); as before,
assuming a knowledge of the ‘dark’ structure will enable a
calculation of the coefficients Ilm(q), as described in section 6.
In the present case, the quantities δ Ilm(q) are identified with
the spherical harmonic expansion coefficients of the change in
the 3D scattered intensity distribution upon excitation with the
pump laser. The corresponding change in the electron density
may be found from equations (41)–(46).

8. Discussion

The possibility of determining the structures of individual
protein molecules without the need for crystallization has been
one of the main scientific justifications (Hajdu et al 2000,
Abela et al 2007) for the development of a fourth-generation x-
ray source, the x-ray free electron laser (XFEL). The algorithm
originally proposed for generating a 3D diffraction volume
from measurements of diffraction patterns from random
orientations of the molecules in a molecular beam has been the
so-called ‘common-line’ method developed originally for 3D
electron microscopy (see e.g. Frank 2006). Our recent work
(Shneerson et al 2008) has shown that the method may indeed
be applied to perform the same task for low-noise diffraction
pattern data. However, our experience is that the method is
difficult to apply for measured mean photon counts per pixel
of less than about 10. A little reflection makes it clear why the
common-line method is not optimal for the very low photon
counts of about 5 per 100 pixels expected for diffraction of
a single XFEL pulse from a typical protein (Shneerson et al
2008). A common-line method seeks to find the relative
orientations of individual diffraction patterns from just a very
small fraction of its data in the vicinity of the common lines.
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A method more suited to this problem, which finds
the relative reciprocal-space orientations of the measured
diffraction patterns from essentially the entire diffracted
photon ensemble, has been demonstrated recently (Fung et al
2008). This employs a manifold embedding technique to find
the latent variables (e.g. the Euler angles specifying the relative
orientations of the diffraction patterns).

The present paper proposes the notion that it may not
be necessary to find the relative orientations of the individual
diffraction patterns in order to extract the quantity of interest,
namely the distribution of scattered intensity over the entire 3D
reciprocal space of the molecule. It has many similarities to the
method of correlation analysis of diffraction data proposed by
Kam (1978), except that, in this case, the correlations may be
measured directly from the data without the large background
isotropic (SAXS-like) contribution. We have indicated how
the 3D diffraction volume of the protein whose structure is
sought may be found unambiguously if the measured data
are combined with data from a similar molecule of known
structure. The applicability of this idea to recover the change
of the structure in a pump–probe time-resolved experiment is
also noted.

9. Conclusions

We have described an algorithm for reconstructing a 3D
diffraction volume from diffraction patterns from random
orientations of an x-ray scatterer. The method involves the
determination of the coefficients of the spherical harmonic
expansion of this 3D diffraction volume from the cross-
correlations of the intensities of the measured diffraction
patterns. The set of these coefficients as a function of
the magnitude q of the scattering vector contain more
general information than is extractable from small angle x-
ray scattering (SAXS), and should allow extraction of much
more information about the molecule than the low-resolution
molecular envelope which is the usual target of SAXS on
biomolecules.

In particular, if a protein whose internal structure is sought
is known to be closely related to that of a protein of known
structure, we suggest that measurements of intensity cross-
correlations of both proteins will allow the determination of
differences between the 3D scattered intensities of the two
proteins, and thus allow the reconstruction of the difference in
electron density between the two structures, as in the molecular
replacement method of traditional protein crystallography. The
last step may be implemented even without the invocation of an
iterative phasing algorithm.

An adaptation of the method is suggested for the
analysis of single-molecule diffraction data from pump–probe
experiments for an efficient determination of time-resolved
changes of the molecular electron density.
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Weckert E, Materlik G and Szöke A 2000 Structural Studies of
Single Particles and Biomolecules, LCLS: The First
Experiments pp 35–62 http://www-ssrl.slac.stanford.edu/lcls/
papers/lcls experiments 2.pdf.
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Oszlányi G and Süto A 2005 Acta Crystallogr. A 61 147
Rossmann M G and Blow D M 1962 Acta Crystallogr. 15 24
Schmidt M, Nienhaus K, Pahl R, Krasselt A, Anderson S, Parak F,

Nienhaus G U and Srajer V 2005 Proc. Natl Acad. Sci.
102 11704

Shneerson V L, Ourmazd A and Saldin D K 2008 Acta Crystallogr.
A 64 303

Shneerson V L and Saldin D K 2009 Acta Cryst. A submitted
Spence J C H, Schmidt K, Wu J S, Hembree G, Weierstall U,

Doak B and Fromme P 2005 Acta Crystallogr. A 61 237
Stuhrmann H B 1970a Z. Phys. 72 177
Stuhrmann H B 1970b Acta Crystallogr. A 26 297
Svergun D I, Baberato C and Koch M H J 1995 J. Appl. Crystallogr.

28 768
Svergun D I and Stuhrmann H B 1991 Acta Crystallogr. A 47 736
Svergun D I, Volkov V V, Kozin M B and Stuhrmann H B 1996

Acta Crystallogr. A 53 419
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